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1
DYNAMIC LOAD BALANCING BASED ON
QUESTION DIFFICULTY

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for performing dynamic load balancing based
on question difficulty.

With the increased usage of computing networks, such as
the Internet, humans are currently inundated and over-
whelmed with the amount of information available to them
from various structured and unstructured sources. However,
information gaps abound as users try to piece together what
they can find that they believe to be relevant during searches
for information on various subjects. To assist with such
searches, recent research has been directed to generating
Question and Answer (QA) systems which may take an input
question, analyze it, and return results indicative of the most
probable answer to the input question. QA systems provide
automated mechanisms for searching through large sets of
sources of content, e.g., electronic documents, and analyze
them with regard to an input question to determine an answer
to the question and a confidence measure as to how accurate
an answer is for answering the input question.

One such QA system is the Watson™ system available
from International Business Machines (IBM) Corporation of
Armonk, N.Y. The Watson™ system is an application of
advanced natural language processing, information retrieval,
knowledge representation and reasoning, and machine learn-
ing technologies to the field of open domain question answer-
ing. The Watson™ system is built on IBM’s DeepQA™ tech-
nology used for hypothesis generation, massive evidence
gathering, analysis, and scoring. DeepQA™ takes an input
question, analyzes it, decomposes the question into constitu-
ent parts, generates one or more hypothesis based on the
decomposed question and results of a primary search of
answer sources, performs hypothesis and evidence scoring
based on a retrieval of evidence from evidence sources, per-
forms synthesis of the one or more hypothesis, and based on
trained models, performs a final merging and ranking to out-
put an answer to the input question along with a confidence
measure.

Various United States Patent Application Publications
describe various types of question and answer systems. U.S.
Patent Application Publication No. 2011/0125734 discloses a
mechanism for generating question and answer pairs based
on a corpus of data. The system starts with a set of questions
and then analyzes the set of content to extract answer to those
questions. U.S. Patent Application Publication No. 2011/
0066587 discloses a mechanism for converting a report of
analyzed information into a collection of questions and deter-
mining whether answers for the collection of questions are
answered or refuted from the information set. The results data
are incorporated into an updated information model

SUMMARY

In one illustrative embodiment, a method, in a data pro-
cessing system, for performing load balancing of question
processing in a Question and Answer (QA) system, imple-
mented by the data processing system, having a plurality of
QA system pipelines. The method comprises receiving, by
the data processing system, an input question for processing
by the QA system and determining a predicted question dif-
ficulty of the input question. The method further comprises
selecting a QA system pipeline from the plurality of QA
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2

system pipelines based on the predicted question difficulty
and routing the input question to the selected QA system
pipeline for processing. In addition, the method comprises
processing the input question by the selected QA system
pipeline to generate an answer for the input question.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program is provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method illustrative embodiment.

In yet another illustrative embodiment, a system/apparatus
is provided. The system/apparatus may comprise one or more
processors and a memory coupled to the one or more proces-
sors. The memory may comprise instructions which, when
executed by the one or more processors, cause the one or more
processors to perform various ones of, and combinations of,
the operations outlined above with regard to the method illus-
trative embodiment.

These and other features and advantages of the present
invention will be described in, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be under-
stood by reference to the following detailed description of
illustrative embodiments when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 depicts a schematic diagram of one illustrative
embodiment of a question and answer (QA) system in a
computer network;

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented;

FIG. 3 illustrates a QA system pipeline for processing an
input question in accordance with one illustrative embodi-
ment;

FIG. 4 is an example diagram of the primary operational
components, and their operation, during a training phase of
operation of a QA system in accordance with one illustrative
embodiment;

FIG. 5 is an example diagram illustrating the primary
operational elements of a QA system during runtime opera-
tion using question difficulty prediction rules generated as
part of a training operation in accordance with one illustrative
embodiment;

FIG. 6 is a flowchart outlining an example operation for
performing question difficulty prediction training of a QA
system in accordance with one illustrative embodiment; and

FIG. 7 is a flowchart outlining an example operation for
performing runtime load balancing routing based on pre-
dicted question difficulty in accordance with one illustrative
embodiment.

DETAILED DESCRIPTION

The illustrative embodiments provide mechanisms for per-
forming dynamic load balancing based on question difficulty.
That is, through training of a Question and Answer (QA)
system, comprising a plurality of QA system pipelines, each
pipeline being associated with separate processors or com-
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puting devices, features of input questions are extracted and
the processing load for processing each input question is
determined. This information may be used to generate load
balancing patterns or rules that may be used to predict the load
on the QA system when subsequent input questions having
similar features are processed. Based on such predictions, and
the current loading of the various processors or computing
devices associated with the QA system pipelines, load bal-
ancing algorithms may be utilized to cause input questions to
be routed to appropriate QA system pipelines based on the
predicted difficulty of processing the input question so as to
balance the load across the processors or computing devices
of the QA system.

Systems are typically load balanced by spreading work
across various nodes, e.g., processors or computing devices,
in parallel. The same technique may be used by a QA system,
such as the Watson™ QA system, such that input questions
may be distributed to various nodes that then answer the input
questions. This technique works well for systems when the
units of work all require a similar amount of time to process.
However, when the units of work vary, the load balancing
offered by this approach is less than optimal. With a QA
system, for example, each question processed could take a
vastly different amount of time to process since some ques-
tions take less or more processing cycles to arrive at an answer
having a sufficiently high confidence measure. The illustra-
tive embodiments provide a solution to such load balancing
issues by taking into account the difficulty of processing the
input question, as determined based on features extracted
from the input question and previous training of the QA
system based on question difficulty, i.e. difficulty of process-
ing the input questions.

With the mechanisms of the illustrative embodiments, dur-
ing a training phase of a QA system, as training questions are
submitted to the QA system, they are analyzed and broken
down to extract features of the input question. These features
represent metadata of the input question including number of
sentences in the question, number of words in each sentence,
overall length of the question, the length of the words in the
question, domain specific question artifacts (e.g., domain
type (e.g., medical, insurance, or pop culture) and sub-do-
main type (e.g., cancer, automobile insurance, or singers),
and the like. Moreover, the features may further include infor-
mation regarding time requirements, resource requirements
(e.g., memory usage and processor usage requirements) to
extract these other features. Furthermore, the features may
include semantic elements of the input question typically
extracted by a QA system when analyzing the input question
for purposes of generating answers to the input question, e.g.,
the Lexical Answer Type (LAT), the Question Classification
(QClass), Question Sections (QSections), and the like. These
semantic elements are used to determine what parts of the
question are important for processing, the type of answer
required, and restraints on the answer.

After extracting these features from the input question, the
input question is submitted to the QA system pipeline for
generating an answer to the input question. When the input
question is submitted to the QA system pipeline, timing data
and/or resource usage data is collected to determine how long
and/or how much of the resources a particular question used
to arrive at an answer having a confidence measure above a
predetermined minimum threshold confidence measure. For
purposes of the following description, it will be assumed that
timing data is primarily used when determining a difficulty of
a question and how to load balance questions submitted.
However, as noted above, it should be appreciated that other
resource usage data may be used instead of, or in addition to,
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this timing data to assist in predicting how difficult a question
will be to answer and then perform load balancing based on
this prediction.

Assuming an embodiment in which timing data is prima-
rily utilized to identify difficulty of a question, the extracted
features are correlated with this timing data to generate a
pattern or rule indicating the extracted features and the result-
ing timing data. In some illustrative embodiments, the
extracted features are correlated with timing data for a plu-
rality of input training questions and groups of training ques-
tions having similar patterns of features are identified. From
this grouping of training questions, the corresponding timing
datamay be used to generate arepresentation of a difficulty of
processing questions having a similar pattern of features. The
generated pattern or rule may then be applied during runtime
operation (after training of the QA system has completed) to
predict processing time requirements for subsequently sub-
mitted input questions. These processing time requirements
are indicative of a level of difficulty of the processing of the
input question. Moreover, as described hereafter, in some
illustrative embodiments, a categorization of difficulty level
may be assigned to questions having a particular pattern of
features such that the category of difficulty may be used to
predict the difficulty of the question. Based on this timing
data, or indication of a general category of difficulty, load
balancing may be performed amongst the various processors
or computing devices, hereafter referred to collectively as
“nodes”, based on this predicted difficulty in generating an
answer for the input question.

Thus, by learning such patterns of features in input ques-
tions and their corresponding timing data, by training the QA
system, similar patterns of features may be identified in sub-
sequent input questions and a prediction that such input ques-
tions are likely to require a similar amount of time to process
the input question and generate an answer having a minimum
threshold level of confidence. For example, through the learn-
ing process, a feature pattern of the type that questions with
three or more words longer than 8 characters whose LAT is
not “X”, “Y”, or “Z” (where X, Y, and Z may be different
lexical answer types), and where the QClass took longer than
N milliseconds to compute take 40% longer to answer than
questions without these features. Such a feature pattern or
rule may be generated through analysis of a plurality of cor-
relations between extracted feature patterns and timing data
for a plurality of input questions submitted to the QA system
during the training phase. Moreover, the feature patterns or
rules may be specific to particular domains of subject matter
since the length of the processing time may be dependent on
the metadata gathered in the training phase with respect to the
subject matter domain. In this way, the load balancing may be
tailored to the subject matter domain.

The mechanisms of the illustrative embodiments allow the
QA system to perform more intelligent routing decisions
about where to send a particular input question to meet
throughput and overall service level agreement requirements
for answering questions. Because the routing decision is
made on calculated question difficulty and current system
load, questions may be routed to a system that has more or less
load than another. For example, system A may have three easy
questions and system B may have one hard question. If a
subsequent question is determined to be easy, it may be routed
to system A if it is determined that time requirements for
processing the combination of the easy questions in system A
balances with the time for processing the single hard question
in system B.

The above aspects and advantages of the illustrative
embodiments of the present invention will be described in
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greater detail hereafter with reference to the accompanying
figures. It should be appreciated that the figures are only
intended to be illustrative of exemplary embodiments of the
present invention. The present invention may encompass
aspects, embodiments, and modifications to the depicted
exemplary embodiments not explicitly shown in the figures
but would be readily apparent to those of ordinary skill in the
art in view of the present description of the illustrative
embodiments.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in any
one or more computer readable medium(s) having computer
usable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium is
a system, apparatus, or device of an electronic, magnetic,
optical, electromagnetic, or semiconductor nature, any suit-
able combination of the foregoing, or equivalents thereof.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
an electrical device having a storage capability, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber based device, a portable compact disc read-only
memory (CDROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium is any tangible medium that can contain or store a
program for use by, or in connection with, an instruction
execution system, apparatus, or device.

In some illustrative embodiments, the computer readable
medium is a non-transitory computer readable medium. A
non-transitory computer readable medium is any medium
that is not a disembodied signal or propagation wave, i.e. pure
signal or propagation wave per se. A non-transitory computer
readable medium may utilize signals and propagation waves,
but is not the signal or propagation wave itself. Thus, for
example, various forms of memory devices, and other types
of systems, devices, or apparatus, that utilize signals in any
way, such as, for example, to maintain their state, may be
considered to be non-transitory computer readable media
within the scope of the present description.

A computer readable signal medium, on the other hand,
may include a propagated data signal with computer readable
program code embodied therein, for example, in a baseband
oras part of a carrier wave. Such a propagated signal may take
any of a variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer read-
able medium that is not a computer readable storage medium
and that can communicate, propagate, or transport a program
for use by or in connection with an instruction execution
system, apparatus, or device. Similarly, a computer readable
storage medium is any computer readable medium that is not
a computer readable signal medium.
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Computer code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java™,
Smalltalk™, C++, or the like, and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer, or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to the illustrative embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions that implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
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noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

FIGS. 1-3 are directed to describing an example Question/
Answer, Question and Answer, or Question Answering (QA)
system, methodology, and computer program product with
which the mechanisms of the illustrative embodiments may
be implemented. As will be discussed in greater detail here-
after, the illustrative embodiments may be integrated in, and
may augment and extend the functionality of, these QA
mechanisms with regard to routing of input questions to one
or more QA system pipelines of a QA system based on pre-
dictive load balancing which in turn is based on a determined
question difficulty. The question difficulty is represented by a
feature pattern or rule that indicates for a specific combina-
tion of features, a corresponding predicted amount of time
needed to generate an answer of' a minimum threshold level of
confidence.

Since the mechanisms of the illustrative embodiments
improve and augment a QA system, it is important to first
have an understanding of how question and answer genera-
tion in a QA system may be implemented before describing
how the mechanisms of the illustrative embodiments are inte-
grated in and augment such QA systems. It should be appre-
ciated that the QA mechanisms described in FIGS. 1-3 are
only examples and are not intended to state or imply any
limitation with regard to the type of QA mechanisms with
which the illustrative embodiments may be implemented.
Many modifications to the example QA system shown in
FIGS. 1-3 may be implemented in various embodiments of
the present invention without departing from the spirit and
scope of the present invention.

QA mechanisms operate by accessing information from a
corpus of data or information (also referred to as a corpus of
content), analyzing it, and then generating answer results
based on the analysis of this data. Accessing information from
a corpus of data typically includes: a database query that
answers questions about what is in a collection of structured
records, and a search that delivers a collection of document
links in response to a query against a collection of unstruc-
tured data (text, markup language, etc.). Conventional ques-
tion answering systems are capable of generating answers
based on the corpus of data and the input question, verifying
answers to a collection of questions for the corpus of data,
correcting errors in digital text using a corpus of data, and
selecting answers to questions from a pool of potential
answers, i.e. candidate answers.

Content creators, such as article authors, electronic docu-
ment creators, web page authors, document database cre-
ators, and the like, may determine use cases for products,
solutions, and services described in such content before writ-
ing their content. Consequently, the content creators may
know what questions the content is intended to answer in a
particular topic addressed by the content. Categorizing the
questions, such as in terms ofroles, type of information, tasks,
or the like, associated with the question, in each document of
a corpus of data may allow the QA system to more quickly
and efficiently identify documents containing content related
to a specific query. The content may also answer other ques-
tions that the content creator did not contemplate that may be
useful to content users. The questions and answers may be
verified by the content creator to be contained in the content
for a given document. These capabilities contribute to
improved accuracy, system performance, machine learning,

20

30

35

40

45

50

55

8

and confidence of the QA system. Content creators, auto-
mated tools, or the like, may annotate or otherwise generate
metadata for providing information useable by the QA sys-
tem to identify these question and answer attributes of the
content.

Operating on such content, the QA system generates
answers for input questions using a plurality of intensive
analysis mechanisms which evaluate the content to identify
the most probable answers, i.e. candidate answers, for the
input question. The illustrative embodiments leverage the
work already done by the QA system to reduce the computa-
tion time for subsequent processing of questions that are
similar to questions already processed by the QA system.

FIG. 1 depicts a schematic diagram of one illustrative
embodiment of a question and answer (QA) system 100 in a
computer network 102. One example of a question and
answer generation which may beused in conjunction with the
principles described herein is described in U.S. Patent Appli-
cation Publication No. 2011/0125734, which is herein incor-
porated by reference in its entirety. The QA system 100 may
be implemented on one or more computing devices 104 (com-
prising one or more processors and one or more memories,
and potentially any other computing device elements gener-
ally known in the art including buses, storage devices, com-
munication interfaces, and the like) connected to the com-
puter network 102. The network 102 may include multiple
computing devices 104 in communication with each other
and with other devices or components via one or more wired
and/or wireless data communication links, where each com-
munication link may comprise one or more of wires, routers,
switches, transmitters, receivers, or the like. The QA system
100 and network 102 may enable question/answer (QA) gen-
eration functionality for one or more QA system users via
their respective computing devices 110-112. Other embodi-
ments of the QA system 100 may be used with components,
systems, sub-systems, and/or devices other than those that are
depicted herein.

The QA system 100 may be configured to implement a QA
system pipeline 108 that receive inputs from various sources.
For example, the QA system 100 may receive input from the
network 102, a corpus of electronic documents 106, QA
system users, or other data and other possible sources of
input. In one embodiment, some or all of the inputs to the QA
system 100 may be routed through the network 102. The
various computing devices 104 on the network 102 may
include access points for content creators and QA system
users. Some of the computing devices 104 may include
devices for a database storing the corpus of data 106 (which is
shown as a separate entity in FIG. 1 for illustrative purposes
only). Portions of the corpus of data 106 may also be provided
on one or more other network attached storage devices, in one
or more databases, or other computing devices not explicitly
shown in FIG. 1. The network 102 may include local network
connections and remote connections in various embodi-
ments, such that the QA system 100 may operate in environ-
ments of any size, including local and global, e.g., the Inter-
net.

In one embodiment, the content creator creates content in a
document of the corpus of data 106 for use as part of a corpus
of data with the QA system 100. The document may include
any file, text, article, or source of data for use in the QA
system 100. QA system users may access the QA system 100
via a network connection or an Internet connection to the
network 102, and may input questions to the QA system 100
that may be answered by the content in the corpus of data 106.
In one embodiment, the questions may be formed using natu-
ral language. The QA system 100 may interpret the question
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and provide a response to the QA system user, e.g., QA
system user 110, containing one or more answers to the
question. In some embodiments, the QA system 100 may
provide a response to users in a ranked list of candidate
answers.

The QA system 100 implements a QA system pipeline 108
which comprises a plurality of stages for processing an input
question, the corpus of data 106, and generating answers for
the input question based on the processing of the corpus of
data 106. The QA system pipeline 108 will be described in
greater detail hereafter with regard to FIG. 3.

In some illustrative embodiments, the QA system 100 may
be the Watson™ QA system available from International
Business Machines Corporation of Armonk, N.Y., which is
augmented with the mechanisms of the illustrative embodi-
ments described hereafter. The Watson™ QA system may
receive an input question which it then parses to extract the
major features of the question, that in turn are then used to
formulate queries that are applied to the corpus of data. Based
on the application of the queries to the corpus of data, a set of
hypotheses, or candidate answers to the input question, are
generated by looking across the corpus of data for portions of
the corpus of data that have some potential for containing a
valuable response to the input question.

The Watson™ QA system then performs deep analysis on
the language of the input question and the language used in
each of the portions of the corpus of data found during the
application of the queries using a variety of reasoning algo-
rithms. There may be hundreds or even thousands of reason-
ing algorithms applied, each of which performs different
analysis, e.g., comparisons, and generates a score. For
example, some reasoning algorithms may look at the match-
ing of terms and synonyms within the language of the input
question and the found portions of the corpus of data. Other
reasoning algorithms may look at temporal or spatial features
in the language, while others may evaluate the source of the
portion of the corpus of data and evaluate its veracity.

The scores obtained from the various reasoning algorithms
indicate the extent to which the potential response is inferred
by the input question based on the specific area of focus of
that reasoning algorithm. FEach resulting score is then
weighted against a statistical model. The statistical model
captures how well the reasoning algorithm performed at
establishing the inference between two similar passages for a
particular domain during the training period of the Watson™
QA system. The statistical model may then be used to sum-
marize alevel of confidence that the Watson™ QA system has
regarding the evidence that the potential response, i.e. candi-
date answer, is inferred by the question. This process may be
repeated for each of the candidate answers until the Watson™
QA system identifies candidate answers that surface as being
significantly stronger than others and thus, generates a final
answer, or ranked set of answers, for the input question. More
information about the Watson™ QA system may be obtained,
for example, from the IBM Corporation website, IBM Red-
books, and the like. For example, information about the Wat-
son™ QA system can be found in Yuan et al., “Watson and
Healthcare,” IBM developerWorks, 2011 and “The Era of
Cognitive Systems: An Inside Look at IBM Watson and How
it Works” by Rob High, IBM Redbooks, 2012.

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented. Data processing system 200 is an example
of'a computer, such as server 104 or client 110 in FIG. 1, in
which computer usable code or instructions implementing the
processes for illustrative embodiments of the present inven-
tion may be located. In one illustrative embodiment, FIG. 2
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represents a server computing device, such as a server 104,
which, which implements a QA system 100 and QA system
pipeline 108 augmented to include the additional mecha-
nisms of the illustrative embodiments described hereafter.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
connected to NB/MCH 202. Graphics processor 210 may be
connected to NB/MCH 202 through an accelerated graphics
port (AGP).

Inthe depicted example, local area network (LAN) adapter
212 connects to SB/ICH 204. Audio adapter 216, keyboard
and mouse adapter 220, modem 222, read only memory
(ROM) 224, hard disk drive (HDD) 226, CD-ROM drive 230,
universal serial bus (USB) ports and other communication
ports 232, and PCI/PCle devices 234 connect to SB/ICH 204
through bus 238 and bus 240. PCI/PCle devices may include,
for example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a flash basic
input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH 204
through bus 240. HDD 226 and CD-ROM drive 230 may use,
for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super [/O
(SI10) device 236 may be connected to SB/ICH 204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of various
components within the data processing system 200 in FIG. 2.
As a client, the operating system may be a commercially
available operating system such as Microsoft® Windows 7®.
An object-oriented programming system, such as the Java™
programming system, may run in conjunction with the oper-
ating system and provides calls to the operating system from
Java™ programs or applications executing on data processing
system 200.

As a server, data processing system 200 may be, for
example, an IBM® eServer™ System p® computer system,
running the Advanced Interactive Executive (AIX®) operat-
ing system or the LINUX® operating system. Data process-
ing system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit
206. Alternatively, a single processor system may be
employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 230, for
example.

A bus system, such as bus 238 or bus 240 as shown in FIG.
2, may be comprised of one or more buses. Of course, the bus
system may be implemented using any type of communica-
tion fabric or architecture that provides for a transfer of data
between different components or devices attached to the fab-
ric or architecture. A communication unit, such as modem
222 or network adapter 212 of FIG. 2, may include one or
more devices used to transmit and receive data. A memory
may be, for example, main memory 208, ROM 224, or acache
such as found in NB/MCH 202 in FIG. 2.
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Those of ordinary skill in the art will appreciate that the
hardware depicted in FIGS. 1 and 2 may vary depending on
the implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to orin place of the hardware depicted in FIGS. 1 and
2. Also, the processes of the illustrative embodiments may be
applied to a multiprocessor data processing system, other
than the SMP system mentioned previously, without depart-
ing from the spirit and scope of the present invention.

Moreover, the data processing system 200 may take the
form of any of a number of different data processing systems
including client computing devices, server computing
devices, a tablet computer, laptop computer, telephone or
other communication device, a personal digital assistant
(PDA), or the like. In some illustrative examples, data pro-
cessing system 200 may be a portable computing device that
is configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data, for example. Essentially, data processing system
200 may be any known or later developed data processing
system without architectural limitation.

FIG. 3 illustrates a QA system pipeline for processing an
input question in accordance with one illustrative embodi-
ment. The QA system pipeline of FIG. 3 may be imple-
mented, for example, as QA system pipeline 108 of QA
system 100 in FIG. 1. It should be appreciated that the stages
of the QA system pipeline shown in FIG. 3 may be imple-
mented as one or more software engines, components, or the
like, which are configured with logic for implementing the
functionality attributed to the particular stage. Each stage
may be implemented using one or more of such software
engines, components or the like. The software engines, com-
ponents, etc. may be executed on one or more processors of
one or more data processing systems or devices and may
utilize or operate on data stored in one or more data storage
devices, memories, or the like, on one or more of the data
processing systems. The QA system pipeline of FIG. 3 may
be augmented, for example, in one or more of the stages to
implement the improved mechanism of the illustrative
embodiments described hereafter, additional stages may be
provided to implement the improved mechanism, or separate
logic from the pipeline 300 may be provided for interfacing
with the pipeline 300 and implementing the improved func-
tionality and operations of the illustrative embodiments.

As shown in FIG. 3, the QA system pipeline 300 comprises
a plurality of stages 310-380 through which the QA system
operates to analyze an input question and generate a final
response. In an initial question input stage 310, the QA sys-
tem receives an input question that is presented in a natural
language format. That is, a user may input, via a user inter-
face, an input question for which the user wishes to obtain an
answer, e.g., “Who are Washington’s closest advisors?” In
response to receiving the input question, the next stage of the
QA system pipeline 500, i.e. the question and topic analysis
stage 320, parses the input question using natural language
processing (NLP) techniques to extract major features from
the input question, classify the major features according to
types, ¢.g., names, dates, or any of a plethora of other defined
topics. For example, in the example question above, the term
“who” may be associated with a topic for “persons” indicat-
ing that the identity of'a person is being sought, “Washington”
may be identified as a proper name of a person with which the
question is associated, “closest” may be identified as a word
indicative of proximity or relationship, and “advisors” may
be indicative of a noun or other language topic.
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The identified major features may then be used during the
question decomposition stage 330 to decompose the question
into one or more queries that may be applied to the corpora of
data/information 345, or a corpus 347 within the corpora 345,
in order to generate one or more hypotheses. The queries may
be generated in any known or later developed query language,
such as the Structure Query Language (SQL), or the like. The
queries may be applied to one or more databases storing
information about the electronic texts, documents, articles,
websites, and the like, that make up the corpora of data/
information 345. That is, these various sources themselves,
collections of sources, and the like, may each represent a
different corpus 347 within the corpora 345. There may be a
different corpus 347 defined for different collections of docu-
ments based on various criteria depending upon the particular
implementation. For example, different corpora may be
established for different topics, subject matter categories,
sources of information, or the like. As one example, a first
corpus may be associated with healthcare documents while a
second corpus may be associated with financial documents.
Alternatively, one corpus may be documents published by the
U.S. Department of Energy while another corpus may be IBM
Redbooks documents. Any collection of content having some
similar attribute may be considered to be a corpus 347 within
the corpora 345.

The queries may be applied to one or more databases
storing information about the electronic texts, documents,
articles, websites, and the like, that make up the corpus of
data/information, e.g., the corpus of data 106 in FIG. 1. The
queries being applied to the corpus of data/information at the
hypothesis generation stage 340 to generate results identify-
ing potential hypotheses for answering the input question
which can be evaluated. That is, the application of the queries
results in the extraction of portions of the corpus of data/
information matching the criteria of the particular query.
These portions of the corpus may then be analyzed and used,
during the hypothesis generation stage 540, to generate
hypotheses for answering the input question. These hypoth-
eses are also referred to herein as “candidate answers” for the
input question. For any input question, at this stage 340, there
may be hundreds of hypotheses or candidate answers gener-
ated that may need to be evaluated.

The QA system pipeline 300, in stage 350, then performs a
deep analysis and comparison of the language of the input
question and the language of each hypothesis or “candidate
answer” as well as performs evidence scoring to evaluate the
likelihood that the particular hypothesis is a correct answer
for the input question. As mentioned above, this may involve
using a plurality of reasoning algorithms, each performing a
separate type of analysis of the language of the input question
and/or content of the corpus that provides evidence in support
of, or not, of the hypothesis. Each reasoning algorithm gen-
erates a score based on the analysis it performs which indi-
cates a measure of relevance of the individual portions of the
corpus of data/information extracted by application of the
queries as well as a measure of the correctness of the corre-
sponding hypothesis, i.e. a measure of confidence in the
hypothesis.

In the synthesis stage 360, the large number of relevance
scores generated by the various reasoning algorithms may be
synthesized into confidence scores for the various hypoth-
eses. This process may involve applying weights to the vari-
ous scores, where the weights have been determined through
training of the statistical model employed by the QA system
and/or dynamically updated, as described hereafter. The
weighted scores may be processed in accordance with a sta-
tistical model generated through training of the QA system
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that identifies a manner by which these scores may be com-
bined to generate a confidence score or measure for the indi-
vidual hypotheses or candidate answers. This confidence
score or measure summarizes the level of confidence that the
QA system has about the evidence that the candidate answer
is inferred by the input question, i.e. that the candidate answer
is the correct answer for the input question.

The resulting confidence scores or measures are processed
by a final confidence merging and ranking stage 370 which
may compare the confidence scores and measures, compare
them against predetermined thresholds, or perform any other
analysis on the confidence scores to determine which hypoth-
eses/candidate answers are the most likely to be the answer to
the input question. The hypotheses/candidate answers may be
ranked according to these comparisons to generate a ranked
listing of hypotheses/candidate answers (hereafter simply
referred to as “candidate answers™). From the ranked listing
of candidate answers, at stage 380, a final answer and confi-
dence score, or final set of candidate answers and confidence
scores, may be generated and output to the submitter of the
original input question.

In accordance with the illustrative embodiments, the QA
system 100 in FIG. 1 may implement a plurality of QA system
pipelines 108, such as the QA system pipeline shown in FIG.
3, for example. Each QA system pipeline 108 may be
executed on a separate processor, computing device, comput-
ing system, or the like, referred to as “nodes” herein. The QA
system 100 may route input questions to the various QA
system pipelines 108 to balance the load of the processing of
the input questions across the various QA system pipelines
108. This load balancing, in accordance with the mechanisms
of the illustrative embodiments, is performed in accordance
with a determined question difficulty of the input question
and the current loads on the QA system pipelines 108. The
determined question difficulty is based on feature patterns
identified during training and a corresponding amount of time
and resources used to answer questions having such feature
patterns, as determined during training of the QA system 100.
Thus, in order to facilitate such routing of input questions
using load balancing that is based on predicted question dif-
ficulty, the mechanisms of the illustrative embodiments uti-
lize a training phase and a runtime production system phase.
Each of these phases and the primary operational components
utilized during these phases will be described in greater detail
hereafter with reference to FIGS. 4 and 5.

FIG. 4 is an example diagram of the primary operational
components, and their operation, during a training phase of
operation of a QA system in accordance with one illustrative
embodiment. As shown in FIG. 4, the primary operational
elements of a QA system 400 used during a training phase of
operation comprise a question analysis engine 410, a QA
system pipeline 420, a question metadata storage device 430,
a data analysis engine 440, and a question difficultly predic-
tionrule storage device 450. The question analysis engine 410
is responsible for extracting features from an input question
and store these features in a data structure associated with the
input question in the question metadata storage device 430 for
further analysis. The QA system pipeline 420 performs the
functions as previously described above with regard to FIG. 3
to process an input question and generate an answer for the
input question. In accordance with the mechanisms of the
illustrative embodiments the QA system pipeline may be
augmented to record a processing time required to process the
input question. This may be accomplished by starting a timer
when processing of the input question is initiated, or storing
timestamps at the beginning and end of processing such that
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the difference between the timestamps may be used to deter-
mine a time for processing the input question.

The question metadata storage device 430 stores metadata
data structures for questions input to the QA system. The
metadata stored in the question metadata storage device 430
may be extracted from the question by the question analysis
engine 410 and stored in the data structure 460. In addition,
processing time data required to process the input question
may be stored in the data structure by the QA system pipeline
420 once the question is processed by the QA system pipeline
420.

The data analysis engine 440 analyzes the metadata data
structures 460 in the question metadata storage device 430 to
identify feature patterns and related load characteristics. The
feature patterns and related load characteristics may be used
as a basis for defining question difficulty prediction rules that
may be applied during runtime operation to predict the diffi-
culty of answering an input question having a similar feature
pattern. These question difficulty prediction rules are stored
in the question difficultly prediction rule storage device 450
for later use during runtime operation.

As shown in FIG. 4, during a training phase of operation of
the QA system 400, a set of training input questions 405 is
used as a basis for training the QA system 400 with regard to
determining question feature patterns and corresponding pro-
cessing time data. The questions may be specific to a particu-
lar domain, e.g., subject matter or question classification, so
as to train the QA system with regard to a specific domain. It
should be appreciated that multiple training input question
sets may be utilized so as to train the QA system for multiple
domains. A separate set of question difficulty prediction rules
may be generated for each domain in accordance with the
mechanisms of the illustrative embodiments.

For a particular set of training input questions 405, the
input questions are submitted to the QA system 400 and are
initially processed by the question analysis engine 410. For a
given input question in the set 405, the question analysis
engine 410 analyzes the question to extract various features of
the question for use in generating metadata describing the
question being processed. In addition, the question analysis
engine 410 monitors the time required to extract various ones
of these features and stores this timing data along with the
extracted features as part of a metadata data structure associ-
ated with the question in the question metadata storage device
430.

The types of features extracted, and timing data collected,
by the question analysis engine 410 may vary depending upon
the particular implementation. In one illustrative embodi-
ment, the extracted features include domain specific question
artifacts, the number of sentences in the question, the number
of words in each sentence, the total number of words in the
question, the length of the words or average length of the
words, the overall length of the question, a focus of the
question, a lexical answer type (LAT) ofthe question, a Ques-
tion Classification (QClass) of the question, and a Question
Section (QSection) of the question. Features such as the
focus, LAT, QClass, and QSection are extracted by the QA
system 400 during runtime operation to analyze an input
question and generate queries to be applied against a corpus
of documents to obtain candidate answers, and ultimately a
final answer, to the input question. The focus of a question is
the portion of the question that references the answer, e.g., the
word “he” in the question “was he the greatest football
player?” is the focus of the question indicating that a male
person is the focus of the question. The LAT refers to the
terms in the question that indicates what type of entity is being
asked for, e.g., in the statement “he liked to write poems” the
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LAT is “poets”. The QClass is the type the question belongs
to, e.g., name, definition, category, abbreviation, number,
date, etc., e.g., if the question is “who was the first President
of'the United States?,” the QClass is a name since the question
is looking for a name as the answer. The QSection refers to
question fragments that require special processing and inform
lexical restraints on the answer, e.g., “this 7 letter word . . . ”
provides a lexical restraint on the answer being a 7 letter
word.

Because features such as the focus, LAT, QClass, and
QSection are extracted by the QA system 400 during runtime
operation when processing questions, the timing related to the
extraction of these features affects the timing required to
process the question and is thus, partly indicative of the ques-
tion difficulty. Hence, as part of the analysis performed by the
question analysis engine 410, the question analysis engine
monitors the amount of time required to extract these features
from the input question and records this timing data in the
metadata data structure for the question stored in the question
metadata storage 430. Thus, for example, the time to compute
the focus, the time to compute the LAT, the time to compute
the QClass, and the time to compute the QSection may be
monitored and recorded, along with the extracted features, in
the data structure 460 in the question metadata storage device
430.

After the initial processing of the training question by the
question analysis engine 410, the training question is submit-
ted to a QA system pipeline 420 for processing. The QA
system pipeline 420 processes the training question in a nor-
mal manner, such as described above with regard to FIG. 3,
with the exception that in addition to this normal manner of
processing, the QA system pipeline 420 monitors the amount
of time required to complete the processing of the training
question. This amount of time is recorded in the metadata data
structure 460 along with the other question metadata. It
should be appreciated that there may be a separate question
metadata data structure 460 generated for each training ques-
tion submitted to the QA system 400.

These metadata data structures 460 may later be analyzed
by the data analysis engine 440 to identify patterns in the
features of the training questions that are indicative of pre-
dictive feature patterns in questions. That is, the feature pat-
terns are indicative of questions that may require a substan-
tially similar amount of time to process. By determining these
feature patterns and associating them with corresponding
predicted amounts of time for processing, a difficulty of ques-
tions matching the feature pattern may be identified and cor-
responding question difficulty prediction rules may be gen-
erated and stored in the question difficultly prediction rule
storage device 450. That is, questions requiring a larger
amount of time to process are more difficult to process than
questions requiring relatively smaller amounts of time to
process. Thus, by matching the features of an input question
to feature patterns stored in question difficulty prediction
rules, corresponding predicted amounts of time for process-
ing the question may be determined and thus, an expected
level of difficulty of the question may be predicted. In some
illustrative embodiments, various thresholds may be estab-
lished for processing times so as to classify questions into
classes of difficulty, e.g., easy, medium, or hard. These clas-
sifications may be stored in conjunction with the question
difficulty prediction rules and may be used during runtime to
determine routing of questions, as described hereafter.

With regard to the actual identification of feature patterns
within the features specified in question metadata data struc-
tures, various logic may be applied to one or more of the
features in the metadata data structures to identify feature
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patterns. For example, logic may be employed for determin-
ing which metadata structures have an average length of
words greater than 4 characters. Of those metadata data struc-
tures, a determination may be made as to which have a focus
of “A”. Of those, a determination may be made as to which
have a LAT of “B”. Of those, the average time to answer the
question may be calculated. The result is a pattern indicant
that for questions having a focus of A and a LAT of B, the
average time to answer the question is predicted to be “X”.
This is but a simple example of one analysis of the metadata
that may be employed. Of course the various types of the
patterns that are recognizable and the types of logic employed
to recognize such patterns may take many different forms
depending upon the particular implementation. For example,
various logic may be used to analyze a plurality of question
metadata data structures to identify trends in this metadata
and identify similar characteristics. For example, one
embodiment may determine that a plurality of questions that
took less than a particular amount of time to process were all
directed to a particular domain and/or had a LAT that took
more than N milliseconds to compute and/or 80% of them
were less than N number of words in length, etc. Any trend
analysis and characteristic similarity identification mecha-
nism may be used without departing from the spirit and scope
of the present invention.

Thus, the illustrative embodiments provide mechanisms
for generating question difficulty prediction rules based on
identified patterns in features extracted from training ques-
tions and corresponding times for processing these training
questions. These question difficulty prediction rules are then
applied, during runtime operation, to newly submitted ques-
tions to predict their difficulty and perform load balancing
routing of questions to QA system pipelines based on the
predicted difficulty of the question.

FIG. 5 is an example diagram illustrating the primary
operational elements of a QA system during runtime opera-
tion using question difficulty prediction rules generated as
part of a training operation in accordance with one illustrative
embodiment. As shown in FIG. 5, the QA system 500 com-
prises a question analysis engine 510, a load balancing router
520, a plurality of QA system pipelines 530-532, a data analy-
sis engine 540, a question metadata storage device 550, and a
question difficulty rule storage device 560. The elements 510,
530-532, 540, 550, and 560 operate in a similar manner to
corresponding elements in FIG. 4. The primary difference in
operation here, however is that there are multiple QA system
pipelines available to process the input question and the load
balancing router 520 performs load balancing routing of input
questions to the QA system pipelines 530-532 based on cur-
rent load levels of the QA system pipelines 530-532 as
reported by the QA system pipelines 530-532 or otherwise
determined by the load balancing router 520, and the question
difficulty as determined by applying the question difficulty
prediction rules to the extracted features of the input question
as extracted by the question analysis engine 510.

As a further functionality, dynamic updating of the diffi-
culty prediction rules may be made possible by again storing
question metadata generated by the question analysis engine
510 during runtime operation in the question metadata stor-
age device 550 as well as the times of processing of questions
reported by the various QA system pipelines 530-532. The
data analysis engine 540 may, periodically, or in response to
the occurrence of a particular event, e.g., a predetermined
number of questions having been process, process the meta-
data data structures in the question metadata storage device
550 to determine if updates to question difficulty rules are
appropriate based on runtime processing of questions. Such
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updates may be based on the newly acquired metadata data
structures generated during runtime as well as the question
difficulty prediction rules generated during training, e.g., the
predicted processing time may be generated as an average of
the predicted processing time in the question difficulty pre-
diction rule and the actual times of processing stored in the
metadata data structures for questions having feature patterns
matching the question difficulty prediction rule.

In operation, when an input question is received by the QA
system 500, the question is first analyzed by the question
analysis engine 510 to extract features and store these features
in a metadata data structure 570 in the question metadata
storage device 550. In addition the extracted features may be
provided to the load balancing router 520 to perform a lookup
of a question difficulty prediction rule that has a matching
pattern of features to those of the input question. The match-
ing question difficulty prediction rule, if there is one, is used
to determine the level of difficulty of processing the input
question and/or the predicted amount of time required to
process the input question. Using this information along with
current load information for the QA system pipelines 530-
532, stored in current load storage device 580, the load bal-
ancing router may select a QA system pipeline 530-532 to
handle processing the input question so as to balance the load
across the nodes associated with the QA system pipelines
530-532. The load balancing router 520 may then route the
input question to the selected QA system pipeline 530-532.
Once the selected QA system pipeline 530-532 finishes pro-
cessing the input question, the time required to process the
input question may be stored in the metadata data structure
570 associated with the question for later analysis by the data
analysis engine 540 when updating the question difficulty
prediction rules.

Thus, the illustrative embodiments provide mechanisms
for generating predictions of question difficulty based on
patterns of features of input questions and using these predic-
tions of question difficulty to determine load balancing rout-
ing to be applied to the input questions. Based on the deter-
mined load balancing routing, the input question may be
routed to one of a plurality of QA system pipelines so as to
balance the load across the nodes hosting the QA system
pipelines. In this way, the load balancing helps achieve ser-
vice level agreement requirements and other performance
goals by providing load balancing to ensure that such require-
ments are able to be achieved.

FIG. 6 is a flowchart outlining an example operation for
performing question difficulty prediction training of a QA
system in accordance with one illustrative embodiment. As
shown, in FIG. 6, the operation starts by inputting a set of
training questions to a QA system (step 610). For the next
question in the set of training questions (step 620), the ques-
tion is analyzed to extract features from the question (step
630) and store the extracted features along with timing infor-
mation indicating the amount of time to extract such features
by the question analysis engine in a question metadata data
structure (step 640). The question is provided to a QA system
pipeline for processing (step 650) and the amount of time
required to process the question via the QA system pipeline is
recorded in the question metadata data structure (step 660).

A determination is made as to whether this was the last
question in the set of training questions (step 670). If not, the
operation returns to step 620 and is repeated for the next
question in the set of training questions. If this was the last
question in the set of training questions, then a data analysis
engine analyzes the question metadata data structures for the
questions in the set of training questions to identify feature
patterns (step 680). For each identified feature pattern, steps
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690-694 are performed. That is, the timing data in the ques-
tion metadata data structures matching the feature pattern is
analyzed to determine a predicted amount time for processing
questions matching the feature pattern (step 690). The pre-
dicted amount of time for processing questions matching the
feature pattern may then be compared against one or more
thresholds of difficulty classification to generate a difficulty
classification for questions matching the feature pattern (step
692). The feature pattern, predicted time for processing of
questions matching the feature pattern, and the question dif-
ficulty classification may then be stored as part of a question
difficulty prediction rule in a question difficulty prediction
rule data structure for later use during runtime operations
(step 694). Once each of the identified feature patterns is
processed in this manner, the operation then terminates.

FIG. 7 is a flowchart outlining an example operation for
performing runtime load balancing routing based on pre-
dicted question difficulty in accordance with one illustrative
embodiment. As shown in FIG. 7, the operation starts by
receiving, in the QA system, an input question for processing
(step 710). The input question is analyzed to extract features
from the input question (step 720). Based on the extracted
features, a search of a question difficulty prediction rule hav-
ing a pattern of features matched by the extracted features of
the input question is performed (step 730). Based on the
matching question difficulty prediction rule, if any, a question
difficulty and time required for processing the question is
identified (step 740). It should be appreciated that if a match-
ing question difficulty prediction rule cannot be found, a
default predicted difficulty may be utilized, e.g., medium
difficulty.

A current load of each of a plurality of QA system pipelines
is retrieved (step 750) and is used along with the predicted
difficulty of the input question and/or required time of pro-
cessing to select a QA system pipeline to process the input
question that balances the load across the nodes hosting the
plurality of QA system pipelines (step 760). The input ques-
tion is then routed to the selected QA system pipeline (step
770) and the input question is thereafter processed by the
selected QA system pipeline (step 780). It should be appre-
ciated that, as previously described above, in addition to
routing the input question to a selected QA system pipeline,
during runtime operation a dynamic updating of the question
difficulty prediction rules may be facilitated by storing the
extracted feature metadata from the input question and the
time actually used to process the input question by the
selected QA system pipeline. This metadata may be periodi-
cally processed by the data analysis engine to perform such
dynamic updating.

As noted above, it should be appreciated that the illustra-
tive embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In one
example embodiment, the mechanisms of the illustrative
embodiments are implemented in software or program code,
which includes but is not limited to firmware, resident soft-
ware, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.
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Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers. Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The description of the present invention has been presented
for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A method, in a data processing system, for performing
load balancing of question processing in a Question and
Answer (QA) system, implemented by the data processing
system, having a plurality of QA system pipelines, the
method comprising:

receiving, by the data processing system, an input question

for processing by the QA system;
determining, by the data processing system, a predicted
question difficulty for generating an answer to the input
question based on at least one feature extracted from the
input question and a correlation of the at least one feature
with a predicted level of question difficulty, wherein the
predicted question difficulty is indicative of a predicted
amount of time required to process the input question to
generate an answer to the input question via a QA system
pipeline in the plurality of QA system pipelines; and

performing load balancing of question processing at least
by:

selecting, by the data processing system, a QA system

pipeline from the plurality of QA system pipelines based
on the predicted question difficulty;
routing, by the data processing system, the input question
to the selected QA system pipeline for processing; and

processing, by the data processing system, the input ques-
tion by the selected QA system pipeline to generate an
answer for the input question.

2. The method of claim 1, wherein selecting the QA system
pipeline from the plurality of QA system pipelines based on
the predicted question difficulty further comprises selecting
the QA system pipeline based on a current load of each of the
QA system pipelines in the plurality of QA system pipelines.

3. The method of claim 2, wherein the current load of a QA
system pipeline is determined based on one or more deter-
mined levels of difficulty for one or more questions currently
being processed by the QA system pipeline.

4. The method of claim 1, further comprising:

training the QA system using training questions, wherein

the training of the QA system comprises extracting fea-
tures from the training questions, identifying similar
features in the training questions to thereby generate one
or more groups of training questions having similar fea-
tures, identifying a level of difficulty of processing each
of the one or more groups of training questions, and
generating a rule correlating the extracted features to the
identified level of difficulty; and

storing the generated rule as a prediction rule in a predic-

tion rule storage device, wherein determining the pre-
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dicted question difficulty of the input question com-
prises applying stored prediction rules in the prediction
rule storage device to the input features extracted from
the input question to predict the level of difficulty of the
input question.

5. The method of claim 1, wherein the level of difficulty of
processing each of the one or more groups of training ques-
tions comprises determining the level of difficulty based on a
combination of an amount of time required to extract features
from a question and an amount of time required to generate an
answer to the question from a corpus of data.

6. The method of claim 3, wherein the training of the QA
system using training questions comprises performing
domain specific training of the QA system for a plurality of
domains of question subject matter.

7. The method of claim 1, wherein determining a predicted
question difficulty of the input question comprises:

extracting, from the input question, one or more features of

the input question to generate one or more extracted
features;

comparing the one or more extracted features to one or

more patterns of features;

identifying a matching pattern of features based on results

of the comparison of the one or more extracted features
to the one or more patterns of features; and

identifying an indicator of question difficulty correspond-

ing to the matching pattern of features.

8. The method of claim 7, wherein the one or more
extracted features comprises at least one of a number of
sentences in the input question, a statistical measure of a
number of words in sentences of the input question, a total
number of words in the input question, a statistical measure of
a length of words in the input question, a length of the input
question, a focus, a lexical answer type, a question classifi-
cation, or a question section.

9. The method of claim 7, wherein the indicator of question
difficulty comprises at least one of a time to process questions
having extracted features matching the matching pattern or a
category of difficulty determined based on a time to process
questions having extracted features matching the matching
pattern, and wherein the time to process questions having
extracted features matching the matching pattern is measured
as an amount of time required to generate an answer from a
corpus of data combined with one or more of a time to com-
pute a focus of a question corresponding to the matching
pattern, a time to compute a lexical answer type of a question
corresponding to the matching pattern, a time to compute a
question classification of a question corresponding to the
matching pattern, or a time to compute a question section of
a question corresponding to the matching pattern.

10. A computer program product comprising a computer
readable storage medium having a computer readable pro-
gram stored therein, wherein the computer readable program,
when executed on a data processing system implementing a
Question and Answer (QA) system having a plurality of QA
system pipelines, causes the data processing system to:

receive an input question for processing by the QA system;

determine a predicted question difficulty for generating an
answer to the input question based on at least one feature
extracted from the input question and a correlation of the
at least one feature with a predicted level of question
difficulty, wherein the predicted question difficulty is
indicative of a predicted amount of time required to
process the input question to generate an answer to the
input question via a QA system pipeline in the plurality
of QA system pipelines; and

perform load balancing of question processing at least by:
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select a QA system pipeline from the plurality of QA
system pipelines based on the predicted question diffi-
culty;

route the input question to the selected QA system pipeline

for processing; and

process the input question by the selected QA system pipe-

line to generate an answer for the input question.

11. The computer program product of claim 10, wherein
the computer readable program further causes the data pro-
cessing system to select the QA system pipeline from the
plurality of QA system pipelines based on the predicted ques-
tion difficulty further at least by selecting the QA system
pipeline based on a current load of each of the QA system
pipelines in the plurality of QA system pipelines.

12. The computer program product of claim 11, wherein
the current load of a QA system pipeline is determined based
on one or more determined levels of difficulty for one or more
questions currently being processed by the QA system pipe-
line.

13. The computer program product of claim 10, wherein
the computer readable program further causes the data pro-
cessing system to:

train the QA system using training questions, wherein the

training of the QA system comprises extracting features
from the training questions, identifying similar features
in the training questions to thereby generate one or more
groups of training questions having similar features,
identifying a level of difficulty of processing each of the

one or more groups of training questions, and generating ,

a rule correlating the extracted features to the identified
level of difficulty; and

store the generated rule as a prediction rule in a prediction

rule storage device, wherein determining the predicted
question difficulty of the input question comprises
applying stored prediction rules in the prediction rule
storage device to the input features extracted from the
input question to predict the level of difficulty of the
input question.

14. The computer program product of claim 10, wherein
the level of difficulty of processing each of the one or more
groups of training questions comprises determining the level
of difficulty based on a combination of an amount of time
required to extract features from a question and an amount of
time required to generate an answer to the question from a
corpus of data.

15. The computer program product of claim 12, wherein
the computer readable program further causes the data pro-
cessing system to train the QA system using training ques-
tions at least by performing domain specific training of the
QA system for a plurality of domains of question subject
matter.
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16. The computer program product of claim 10, wherein
the computer readable program further causes the data pro-
cessing system to determine a predicted question difficulty of
the input question at least by:

extracting, from the input question, one or more features of

the input question to generate one or more extracted
features;

comparing the one or more extracted features to one or

more patterns of features;

identifying a matching pattern of features based on results

of the comparison of the one or more extracted features
to the one or more patterns of features; and

identifying an indicator of question difficulty correspond-

ing to the matching pattern of features.
17. The computer program product of claim 16, wherein
the indicator of question difficulty comprises at least one of a
time to process questions having extracted features matching
the matching pattern or a category of difficulty determined
based on a time to process questions having extracted features
matching the matching pattern, and wherein the time to pro-
cess questions having extracted features matching the match-
ing pattern is measured as an amount of time required to
generate an answer from a corpus of data combined with one
or more of a time to compute a focus of a question corre-
sponding to the matching pattern, a time to compute a lexical
answer type of a question corresponding to the matching
pattern, a time to compute a question classification of a ques-
tion corresponding to the matching pattern, or a time to com-
pute a question section of a question corresponding to the
matching pattern.
18. A data processing system comprising: a processor; and
a memory coupled to the processor, wherein the memory
comprises instructions which, when executed by the proces-
sor, cause the processor to:
receive an input question for processing by a Question and
Answer (QA) system; determine a predicted question
difficulty for generating an answer to the input question
based on at least one feature extracted from the input
question and a correlation of the at least one feature with
a predicted level of question difficulty, wherein the pre-
dicted question difficulty is indicative of a predicted
amount of time required to process the input question to
generate an answer to the input question via a QA system
pipeline in the plurality of QA system pipelines; and

perform load balancing of question processing at least by:

select a QA system pipeline from a plurality of QA system
pipelines based on the predicted question difficulty;

route the input question to the selected QA system pipeline
for processing; and

process the input question by the selected QA system pipe-

line to generate an answer for the input question.
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